1.直喷发动机和电喷发动机有什么区别?有什么优缺点吗?

2.电喷车的喷油原理是什么

3.汽油发动机喷油控制原理

4.电喷发动机的工作原理

5.电喷发动机的组成和工作原理

汽油发动机电喷原理图解_汽油发动机电喷原理

电喷是通过电子控制的形式将燃油喷射到进气管内与空气混合,再由发动机的吸气行程将油气混合气吸入缸内。

缸内直喷是喷油嘴从进气歧管被移到了汽缸内部,因此缸内油气的量不会受进气阀开合的影响,而是直接由电脑自动决定喷油时机与份量。

由于油、气的混合空间、时间都相当短暂,因此缸内直喷系统必须依靠高压将燃油从喷油嘴压入汽缸,以达到高度雾化的效果。

直喷发动机和电喷发动机有什么区别?有什么优缺点吗?

电喷发动机工作原理

电喷发动机是用电子操纵装置.取代传统地机械系统(如化油器)来操纵发动机地供油过程.如汽油机电喷系统就是通过各种传感器将发动机地温度、空燃比.油门状况、发动机地转速、负荷、曲轴位置、车辆行驶状况等信号输入电子操纵装置.电子操纵装置根据这些信号参数.计算并操纵发动机各气缸所需要地喷油量和喷油时刻,将汽油在必定压力下通过喷油器喷入到进气管中雾化.并与进入地空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态.这种由电子系统操纵将燃料由喷油器喷入发动机进气系统中地发动机称为电喷发动机. 电喷发动机按喷油器数量可分为多点喷射和单点喷射.发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射.发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射.

汽油喷射发动机与化油器式发动机相比,突出地优点是能准确操纵混合气地质量,保证气缸内地燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机地充气效率,增加了发动机地功率和扭矩.电子操纵燃油喷射装置地缺点就是成本比化油器高一点,因此价格也就贵一些,故障率虽低,一旦坏了就难以修复(电脑件只能整件更换),但是与它地运行经济性和环保性相比,这些缺点就微不足道了.

分类汽油喷射型式分为机械式和电子操纵式两种.机械式汽油喷射装置是一种以机械液力操纵地喷射技术,早在30年代就应用在飞机发动机,50年代开始应用在德国奔驰300BL轿车发动机上.集成电路地出现使电子技术能在发动机上得到应用,一种更好地汽油喷射装置——电子操纵汽油喷射技术也就应运而生了.

结构任何一种电子操纵汽油喷射装置,都是由喷油油路,传感器组和电子操纵单元(微型电脑)三大部分组成.当喷射器安装在本来化油器位置上,称为单点电控燃油喷射装置;当喷射器安装在每个气缸地进气管上,称为多点电控燃油喷射装置.

原理喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成,电控单元发出地指令信号可将喷射器头部地针阀打开,将燃油喷出.传感器好似人地眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给“中枢神经”地电子操纵单元.电子操纵单元是一个微计算机,内有集成电路以及其它精密地电子元件.它汇集了发动机上各个传感器集地信号和点火分电器地信号,在千分之几十秒内分析和计算出下一个循环所需供给地油量,并及时向喷射器发出喷油地指令,使燃油和空气形成理想地混合气进入气缸燃烧产生动力.

历史从60年代起,随着汽车数量地曰益增多,汽车废气排放物与燃油消耗量地不断上升困扰着人们,迫使人们去寻找一种能使汽车排气净化,节约燃料地新技术装置去取替已有几十年历史地化油器,汽油喷射技术地发明和应用,使人们这一理想能以实现.早在1967年,德国波许公司成功地研制了D型电子操纵汽油喷射装置,用在大众轿车上.这种装置是以进气管里面地压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定地缺点.针对这些缺点,波许公司又开发了一种称为L型电子操纵汽油喷射装置,它以进气管内地空气流量做参数,可以直接遵照进气流量与发动机转速地关系确定进气量,据此喷射出相应地汽油.这种装置由于设计合理,工作可靠,广泛为欧洲和曰本等汽车制造公司所用,并奠定了今天电子操纵燃油喷射装置地邹型.至19年起美国地通用,福特,曰本地丰田,三菱,曰产等汽车公司都推出了各自地电子操纵汽油喷射装置,尤其是多气门发动机地推广,使电子操纵喷射技术得到迅速地普及和应用.到目前为止,欧美曰等主要汽车生产大国地轿车燃油供给系统,95%以上安装了燃油喷射装置.从99年1月1曰起,只有用电子操纵汽油喷射装置地轿车才能准予在北京市场上销售.

现在电喷发动机(电子操纵汽油喷射式发动机)地使用在轿车中越来越普遍,有消息称化油器式发动机轿车在我国各大城市将很快被“消灭”.因此车主对电喷发动机地了解变得越来越重要,只有了解了电喷发动机地“脾气”,您才能更好地使用和养护爱车.

电喷发动机与化油器式发动机有很大地区别,在使用操作方法上也颇有不同.起动电喷发动机时(包含冷车起动),一般无需踩油门.因为电喷发动机都有冷起动加浓、自动冷车快怠速功能,能保证发动机不论在冷车或热车状态下顺利起动;在起动发动机之前和起动过程中,像起动化油器式发动机那样反复快速踩油门踏板地方法来增加喷油量地做法是无效地.因为电喷发动机地油门踏板只操纵节气门地开度,它地喷油量完全是电脑根据进气量参数来决定;在油箱缺油状态下,电喷发动机不应较长时间运转.因为电动汽油泵是靠流过汽油泵地燃油来进行冷却地.在油箱缺油状态下长时间运转发动机,会使电动汽油泵因过热而烧坏,所以如果您地爱车是电喷车,当仪表盘上地燃油警告灯亮时,应尽快加油;在发动机运转时不能拔下任何传感器插头,否则会在电脑中显现人为地故障代码,影响维修人员正确地判断和排除故障.

另外要注意地是,尽量不要在电喷车上装用大功率地移动式无线电话系统及无线电设备,以防止无线电信号对电脑工作产生干扰.

汽车电喷发动机的构造和工作原理 “电喷”发动机(电子控制燃油喷射发动机的简称)系统主要由各种传感器、发动机电子控制单元(ECU)和各种执行器三大部分组成。

传感器是“电喷”发动机系统的主要组成部分之一。它是ECU的“眼睛”和“耳朵”,时刻监视着系统内外的变化,使发动机始终处在一个良好的运转状态。用于“电喷”发动机中的传感器主要有:进气流量传感器、进气压力传感器、进气温度传感器、冷却液温度传感器、节气门位置传感器、曲轴位置传感器、同步信号传感器、氧传感器、爆震传感器、车速传感器。下面对它们的构造和工作原理逐一进行介绍。

一、进气流量传感器

这类传感器是决定喷油量的重要传感器。它安装在空气滤清器后的进气管前端,用来检测进气量的参数。单独检测进气流量或进气压力均能反映进气量的情况,所以有的“电喷”发动机用进气流量式检测(如凌志LS400、宝马等),有的则用进气压力式检测(如3.0、北京切诺基等)。

进气流量传感器的种类较多,有机械检测的翼片式进气流量计,有光电检测的卡门漩涡式流量计,有热敏元件检测的热线式流量计及它的改进型热膜式流量计。

常用的热线式进气流量式传感器的工作原理图。为了测量进气温度(即进气流量)的变化,在进气管道中安装了两个由自金丝(或白金薄膜)做成的热敏电阻Rt和Rt’(Rt’为温度补偿电阻),与外部的R1、R2构成惠斯顿电桥。

发动机不工作时,即进气管道中的空气处于静止状态时,电桥维持在一种平衡状态,控制集成电路(IC)不起调整控制作用。发动机工作时,由于空气从热敏元件Rt、Rt’周围流过,Rt、Rt’周围的空气温度及Rt、Rt’自身的阻值均要降低(PTC特性)。所以电桥改变原平衡状态,在R1两端产生与原来不同的电压,使集成电路(IC)进行控制调整。调整的结果是使Rt两端电压升高,因此流过Rt、Rt’的电流增大,产生更多的热量。最终因温度升高,使Rt、Rt’的阻值升高,直至电桥重新达到平衡状态。

调节控制规律是:进气(空气)流量越大,电桥越不平衡,因而控制调节电压也就越高,流过Rt的热线电流也就越大。由于发动机工作时进气流量是在不断变化的,所以流过电桥上的热线电流也是不断变化的,即Rt两端的电压UO也是在不断变化的。把这个与进气量成正比变化的电压信号UO送至ECU,ECU再去控制喷油量的大小,即可使发动机转速稳定在不同的量级上。

二、进气压力传感器

这类传感器是控制喷油量大小的另一类传感器。它安装在发动机的进气歧管上,用来检测进气歧管内的绝对压力和环境大气压之间的差值。它的种类也较多,有膜片传动的可变电阻式、膜片传动可变电感式、超声波压电换能式、压敏电阻式和电容式。

图3是北京切诺基轿车用的膜片传动可变电阻式进气压力传感器工作原理图。它的构造及工作原理类似于传统的膜片式机油压力传感器。只不过它没有触点,用的是可变电阻形式。

来自节气门后部歧管内真空度高低的变化反映了进气压力高低的变化。在真空吸力的作用下,进气压力传感器密封腔内的膜片左右移动,膜片又带动可变电阻的滑片移动,最后使传感器输出的信号电压发生变化。ECU则根据这个随进气压力高低变化的信号电压去控制喷油量的大小。

三、进气温度传感器

这类传感器安装在进气歧管内,用来向ECU提供进气温度信息。进气温度也与喷油量的大小有关。进气温度低(如启动冷车)就要加大喷油量,进气温度高(如热车)就要减小喷油量。实际上测量进气温度的高低,也就是间接地测量进气量(空气密度)的大小。因为进气量的大小与空气的密度有关,而空气的密度又与进气温度成正比。汽车上广泛用的是半导体热敏电阻式温度传感器,具有负的温度系数(NTC)。它的构造和工作原理很简单。

当进气温度低时,热敏电阻Rt的阻值增大,电路中的电流将减小。当进气温度高时,热敏电阻Rt的阻值将减小,电路中的电流将增大。由于回路中电流的变化,将引起Rt两端电压的变化,ECU接收到这个变化的信号电压后,也就获悉了进气温度的高低,然后去控制喷油量的大小。

四、冷却液温度传感器

这类传感器安装在冷却液管道内,用来向ECU提供发动机温度的信息。它用的也是上述的半导体热敏电阻式温度传感器,其构造与工作原理基本相同,在此不再赘述。

五、节气门位置传感器

这类传感器与喷油量的大小有直接关系。它安装在节气门阀体上,用来向ECU提供节气门的开启状态及速度的信息。它开启的角度大小,反映着发动机的转速和负荷的情况。

节气门位置传感器有可变电阻式模拟线性输出和触点式开关型输出两种。可变电阻式线性输出的节气门位置传感器的工作原理图。

传感器可变电阻的滑片(即中间抽头)由节气门轴带动在电阻片上滑动。当节气门开启角度小时(如怠速或发动机小负荷运转时),滑片向上滑动,电阻值增大,这时从B端向ECU输入一个低的信号电压。当节气门开启角度增大时(如汽车爬坡或大负荷运转),滑片向下滑动,电阻值减小,这时从B端向ECU输入一个高的信号电压。输出信号电压的大小与节气门开度的大小成正比。ECU根据输入电压的高低,以判断发动机当前的情况,决定喷油量的大小、点火是否提前、是否需要中断电器设备(如爬坡、大负荷时断开空调)等。

六、曲轴位置传感器

这类传感器是检测发动机的曲轴转角、活塞位置和发动机转速的重要传感器。它向ECU提供上述被检测对象当前所处的状态信息,它直接关系到点火正时与发动机能否启动。

曲轴位置传感器的结构形式和安装位置因不同的车型而各异。结构形式常见的有:霍尔式、磁脉冲式和光电式。安装的部位有在飞轮及飞轮壳上的,有在分电器内的,还有在曲轴前端或凸轮轴前端的。

是一种安装在飞轮上的霍尔效应式曲轴位置传感器。四缸发动机飞轮上的信号传感器结构。飞轮上有8个槽齿,每4个槽齿为1组,共分成2组。1、4两缸为一组,2、3两缸为一组,各占飞轮圆周60°。每组中每个槽间隔20°,每组相隔180°。

当飞轮上的槽经过传感器时,霍尔传感器便产生信号电压,输出高电平(5v)。当飞轮两槽间的齿经过传感器时,霍尔传感器输出低电平(0.3V)。因此当飞轮上每一个齿槽通过传感器时,都将产生一个高、低电平变化的脉冲信号。四缸发动机的飞轮每旋转一周,将产生两组脉冲信号(每组4个),把这两组脉冲信号送人ECU,ECU就可利用一组脉冲信号判断1、4两缸活塞已接近上止点,或利用男一组脉冲信号,判断2、3两缸活塞已接近上止点,然后确定何时喷油。

另外,ECU根据输入的脉冲速率,还能计算出单位时间内飞轮转过的槽齿数,也就是发动机当前的转速。

七、同步信号传感器

ECU通过曲轴位置传感器,只能判定某两个活塞(如1、4两缸)已接近上止点。但它不知道究竟是“1”缸活塞还是“4”缸活塞已接近上止点。对于“电喷”发动机按次序喷射系统来说,必须要知道是哪一个缸的活塞已接近上止点,以备喷油或点火。这就需要同步信号传感器来完成这个判缸任务。

同步信号传感器与曲轴位置传感器的结构和工作原理基本相同,它也有多种安装及结构形式。它主要由分电器轴驱动的脉冲转子和霍尔传惑器组成。图中C、D间虚线以上部分的半圆弧(180°)称作脉冲环,其与霍尔传感器配合工作产生脉冲信号。当分电器轴驱动脉冲转子转动,脉冲环从D端开始进入霍尔传感器内直至C端时,霍尔传感器输出高电平。ECU接收到高电平后,便可判定“4”缸活塞已接近上止点且为排气行程,可进行喷油。而“1”缸活塞也已接近上止点,且为压缩行程可进行点火。

当分电器轴驱动脉冲转子转动,脉冲环从c端开始离开霍尔传感器后,信号传感器输出低电平。ECU接收到低电平信号后,便可判定“4”缸活塞已接近上止点,但为压缩行程可进行点火。

而“1”缸活塞为排气行程,可进行喷油。发动机转两周,脉冲转子转一周,同步信号传感器产生的脉冲信号电压波形。

八、氧传感器

现代汽车为了减少废气排放(主要成分是一氧化碳CO、碳氢化合物HC及氮氧化物NOx),以适应排污法规的要求,普遍在排气管装有氧传感器和三元催化反应器。利用氧传感器提供反馈信息送至ECU,实现混合气空燃比的闭环控制。同时还利用三元催化反应器将废气中的CO转化(氧化)为O2,HC化合物转化(氧化)为H2O,NOx转化(还原)为O2、N2无害气体。为了达到此目的,也就是说为了使三元催化反应器能正常工作,要求混合气的空燃比必须在理论空燃比范围内(理论混合气空燃比为14.7:1)。这就需要用氧传感器测定废气中氧的含量(即空燃比大小),向ECU反馈信息,及时修正喷油量使空燃比回到理论值。

氧传感器有氧化锆式和氧化钛式(电阻型)两种。它的外表面电极插入废气管中,与废气接触,内表面电极与大气相通。氧化锆是固体电解质,它在一定的温度时能与氧气发生电离作用。当废气中的氧与大气中的氧含量有差异时,如大气中的氧浓度比废气中的氧浓度高对(混合气浓),氧离子就从大气侧的内表面电极向排气侧的外表面电极移动,于是在两个电极之间便产生一个电动势,亦即信号电压。当产生的信号电压低时(0.1v),表明废气中含氧量高,混合气稀。产生的信号电压高时(1v),表明废气中含氧量低,混合气浓。ECU根据氧传感器送来的信号电压及时修正喷油量,实行闭环控制使空燃比回到理论值,以减少排污,提高经济性。

在实际使用中,因氧化锆传感器的输出信号与温度有关(600℃左右时最佳),所以常用图8b带加热元件的工作方式。

九、爆震传感器

发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机“爆震”。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪声及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的发生,爆震传感器是不可缺少的重要器件,以便通过电子控制系统去调整点火提前时间。

发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先存储的点火及其它数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。

爆震传感器也有多种类型。常见的有压电式(共振型、非共振型)和磁致伸缩式两大类。其中压电式共振型传感器应用最多,它一般安装在发动机机体上部,利用压电效应把爆震时产生的机械振动转变为信号电压。当发生爆震时的振动频率(约6000Hz左右)与压电效应传感器自身的固有频率一致时,即产生共振现象。这时传感器会输出一个很高的爆震信号电压送至ECU,ECU及时修正点火时间,避免爆震的发生。图9(a)是压电式共振型爆震传感器输出信号电压与频率的关系。转载请注明转自“维修吧- ://.weixiu8”

十、车速传感器

这类传感器的作用是向ECU提供汽车在怠速、减速、加速和恒速时的速度信息的。它有舌簧开关式、光电式、霍尔式等。一般安装在仪表盘内,由机械部件来驱动。

它由里程表芯子驱动的磁铁和舌簧开关组成。汽车行驶的车轮转速通过里程表芯子来驱动磁铁每旋转一周,其极性要改变一次,使舌簧开关的触点闭合和断开一次,从而产生一连串的脉冲信号电压。ECU接收到此信号后,通过计算脉冲数的多少,就可知道当前的车速状况。

“电喷”发动机除了以上传感器外,还有类似传感器的一些信号。如:空调请求信号、启动信号、蓄电池电压信号等,在这就不一一叙述了。

综上所述,传感器是“电喷”发动机的重要部件。它们的工作正常与否,直接关系到发动机工作的正常与否。在“电喷”发动机中,传感器出现的故障占有很大的比例,而ECU和执行器出现的故障相比来说要少得多。

电喷车的喷油原理是什么

内容概述:

电喷与化油器

单点电喷与多点电喷

升级标准的缸内直喷

在分析内燃机技术时总会提起缸内直喷和多点电喷两个术语,解析内容多为两类喷油系统的技术代差;然而很多汽车爱好者对于电喷的概念还不清晰,似乎认为直喷是一种“区别于电喷”的系统,这是错误的理解哦。

其实三类型的喷油系统都是电喷,其特殊命名是为和「化油器」技术进行区分!

两类系统

化油器在2001.09之前是喷油系统的主要类型,之后在汽车领域禁用,摩托车应当是2017年禁止使用这种技术。

所谓“化油”实际指雾化燃油,化油器本身是一条管路,通过节气门可调翻板控制进气量;内燃机在运行中有四个步骤,分别为:进气喷油、压缩蒸发、膨胀做功、排气吸气,交替运转的过程中会产生是负压吸力,化油器里的“文丘里流量计”(流量管)的收缩部分运动会形成真空,这也会形成一种负压吸力,燃油就这样被吸入化油器了。

(下图为文丘里管概念)

运行原理:将燃油吸入化油器只是第一步,因为吸入的燃油还是流体液态;这种状态直接进入内燃机燃烧室是没法正常点火做功的;但好在负压力本就是气流形成,燃油在气流的动能作用下会被“打散”,也就是一定程度的成为雾状(仍为液态但为雾化),这就是所谓的化油器运行原理。

而化油器只所以被禁止使用有两个原因,首先是依靠气流动能雾化燃油的效果太差,油珠粒径很难达到非常小的标准;在相同温度环境中大油珠的蒸发速度慢,反之小油珠的速度会更快,蒸发速度直接决定做功冲程中,燃油燃烧转化为机械能(动力)的比例,反应程度越高则转化出的扭矩就会越大,相同转速的扭矩越大则马力越大,也就是说化油器很难实现理想的扭矩。

同时化油器的燃油雾化效果还要受到温度的影响,温度越高雾化效果越好;而在低温冷启动时的化油器温度很低,燃油无法理想雾化则等于无法正常燃烧做功,忽浓忽淡的混合气会让怠速抖动非常明显,而且过浓的瞬间还会熄火。所以化油器汽车必须原地热车,这不仅会大量浪费燃油,还会因燃烧不充分而增加排放物,这就是化油器被淘汰的核心因素。

单点电喷是取代化油器的核心技术,有趣的是还成为氢燃料汽车出现的推动因素;化油器又称为“白金点火”,也就是需要使用「PT-铂」这种贵金属。在化油器时代日系车企期望垄断技术,于是囤积了大量的PT,然而随即电喷技术应用而迅速淘汰了化油器;为了消耗这些铂,日系汽车车企推广氢燃料电池堆技术,制造这种化学发电电池需要消耗大量PT。

不过因能量转化损耗太大,制造氢能本身要消耗常规能源,高压液态氢罐的危险性过高,以及车辆本质是电动汽车等诸多因素,决定了这种增程电驱技术会像化油器一样被淘汰,那么电喷究竟有什么优势呢?

电喷可以理解为「电机增压·压力喷油系统」,如果说化油器是依靠真空“吸出燃油”进行浅程度的雾化,电喷就是“压缩喷油”;油路系统中会有油泵,泵的功能就是通过电机为液态或气体增压。

油泵从油箱内抽出燃油后会通过油管送到喷油嘴,喷油嘴的本事是个电磁阀;通路打开泄压部分,通过多个细密的喷孔实现燃油雾化,断路闭合后为油泵持续送油并形成压力,等待下一次打开喷油嘴继续雾化喷油。压力喷油决定了只要燃油不结冻,启动后的热车喷油是什么状态,冷车雾化状态也会相同,这就解决了原地热车浪费燃油与增加排放的问题。

优势2:恒压精度高!

油路系统的增压与喷射压力是固定的,按照设定标准喷油可以保证始终都有良好雾化效果,这是化油器依靠气流强度调整雾化效果而达不到的标准。所以单点电喷很显然要比化油器优秀很多,不过这也只是技术革新的第一步而已。

「单点」的概念是喷油嘴(不论有几个)都会固定在进气歧管的总管路上,而总管道与各个气缸的连接是通过进气歧管;也就是说内燃机气缸交替做功时,燃油雾化后才会通过歧管进入气缸。但是不同歧管的长度也是不同的,这就是决定了燃油的雾化时间与程度也会存在差异,燃烧做功转化出的扭矩有大有小,这种运行状态优于化油器但还是不够理想。

多点&气缸内部喷油

多点电喷当然就是字面上的含义,单点是在总管路布局燃油嘴,多点则是在每条进气歧管的末端(进气门之前)的位置都安装喷油嘴;状态为斜置面对进气门背部,喷油后依靠气流动能混合。

这样的设计就能以控制多个气缸单独交替进气时的恒定气流动能,实现理想且标准的燃油雾化效果了;结果自然是运行状态更稳定,燃烧程度也会更加充分了。所以多点电喷至今仍然在使用,不过主力车型都是≤8万区间内的车辆,或者是技术偏落后的部分一线品牌合资汽车,真正优秀的汽车都已经使用缸内直喷了。

缸内直喷同样是多点电喷系统,区别只是喷油嘴布局的差异。

多点电喷-进气歧管

直喷技术-气缸内部

进气歧管的直径非常小,即使是斜置布局也必须以低压力喷油,否则压力过高就会把燃油喷射到管壁,或过量飞溅到气门上。所以多点电喷的喷油压力多为三个标准:2.5、3.0、3.5bar,这种压力标准只能将雾化燃油的油珠粒径达到准微米的标准,一毫米等于一千微米,蒸发性能和燃烧效率虽然比单点和化油器更好,但还有提升空间。

缸内直喷技术的喷油压力可以达到350bar,也就是多点电喷的100倍以上;而高压共轨技术的直喷系统,油压可以达到2000bar,差距是不是过于大了呢?

图1:侧置直喷

图2:悬吊直喷(更理想)

直喷系统之所以能够超高压力喷油,原因在于用以喷油的空间大;第一进气冲程的活塞会往下运转,气缸容积都能用来喷油,这就不用担心喷油飞溅的问题了。那么以高压标准喷油则油珠粒径会非常小,小到可以低至10微米以内。

这种雾化燃油混合空气后的蒸发速度会非常快,充分的蒸发后,在短暂的做功冲程中,可以瞬间达到非常高的燃烧标准(程度)。说白了就是烧的快则产生的能量大,而且是以消耗等量燃油实现更大扭矩,标准差距会有多大呢?

技术差距:第一组数据为多点电喷,第二组数据为缸内直喷。

1.5T-210/300N·m

2.0T-280/400N·m

3.0T-420/550N·m

这就是差距了,扭矩×转速÷9549×1.36=马力,感受以下扭矩差值对马力的影响吧。在可以购买直喷发动机车辆的前提下,没有任何理由再选多点电喷。

汽油发动机喷油控制原理

喷油器是电磁式的。当喷油器不工作时,针阀在回位弹簧作用下将喷油孔封住。当ECU[发动机电控电脑]的喷油控制信号将喷油器的电磁线圈与电源回路接通时,针阀才在电磁力的吸引下克服弹簧压力、摩擦力和自身重量,从静止位置往上升起,燃油喷出。

多点喷油系统中喷油器通过绝缘垫圈安装 在进气歧管或进气道附近的缸盖上,并用输油管将其固定。多点喷油系统每缸有一个喷油器。英文称为 multi point injection .简称 为MPI.

单点喷油系统的喷油器安装在节气门体上,各缸共用一个喷油器。英文为single pointinjection. 简称为SPI

电喷发动机的工作原理

主要是根据进气量计算出初始喷油量,再根据其他信号微调。

喷油量的计算控制是一个复杂的过程。

1、原则是,另空燃比接近与14.7:1,这是理论上汽油正好能完全燃烧与所需要的空气的比例。以保障燃油可以完全燃烧,因为只有这样才能发挥出油的最大动能,同时可以是污染最低。

2、信号集方法,用空气流量计(进气压力传感器)检测进气量;根据发动机转速、油门开度、车速等判断工况;用氧传感器反馈上一周期喷油量是否正常算出修正值。通过控制喷油器通电时间来控制实际油量。

3、计算(控制)喷油量,根据进气量算出大致的喷油量、根据工况、反馈等信号修正喷油量,然后生成实际的喷油量。再将其转化成喷油器相应的通电时间,喷油器再动作喷油。

以上只是简单的从大的轮廓上介绍了喷油量的形成,实际的计算远复杂于所述。另其还与发动机布置、进气布局、喷油形式、喷油时刻等诸多问题有关。

电喷发动机的组成和工作原理

电喷发动机是用电子控制装置.取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。

电喷发动机按喷油器数量可分为多点喷射和单点喷射。发动机每一个气缸有一个喷油咀,英文缩写为MPI,称多点喷射。发动机几个气缸共用一个喷油咀英文缩写SPI.称单点喷射。

电喷车点火系统的工作原理

从1957年美国公司推出了电子控制汽油喷射系统,这就是所谓的电子喷射,简称电喷。电喷技术为发动机,乃致整个运输事业的发展开创了一个新纪元。起先是用的模拟电子喷射,后来发展到数字电子喷射。它的基本原理是微电脑(ecu)根据各种传感器传来的信号,通过分析、计算、判断,从而精确地控制和选择最佳点火和喷油时刻及喷油量。电子控制汽油喷油喷射的优点主要表现为:一是对各种工况都能根据特定的目标对燃油定量实现最精确的优化,且各工况之间能做到最佳匹配;二是可实现闭合控制,防止喷射密度的变化所带来的喷油量偏差。

在汽油机中,气缸内的可燃混合气是由电火花点燃的,在汽车发动机点火系统中,点火线圈是为点燃发动机汽缸内空气和燃油混合物提供点火能量的执行部件。它基于电磁感应的原理,通过关断和打开点火线圈的初级回路,初级回路中的电流增加然后又突然减小,这样在次级就会感应产生点燃火花塞所需的高电压。点火线圈可以认为是一种特殊的脉冲变压器,它将10-12v的低电压转换成25000v或更高的电压。

为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按规定的时间在火花塞电极间产生电火花的全部设备称为点火系统,点火系统通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。对于早期的机械触点断路器(即白金点火)和通过无分布器晶体管点火的机械高压分布帽点火。

以及后来的双火花线圈。属于微机控制点火系,主要由下列元件组成,监测发动机运行状况的传感器、处理信号、发出指令的微处理机(ecu)、响应微机指令的点火器、点火线圈等。微机控制点火系统由于不再配置真空离心点火提前调节装置,点火提前角由微机控制,从而使发动机在各种情况下都可最佳地调整点火时刻,使点火提前到发动机刚好不发生爆震的范围。微机控制的点火系统具有能量损失小、高速性能好、电磁干扰少及点火精度高等诸多优点,目前在中高档车上的应用越来越多。用无分电器点火方式同时点火,同时点火是指两个气缸合用一个点火线圈,即一个点火线圈有两个高压输出端。

点火系统是由几个部份组成:微处理机(ecu),点火线圈,电子驱动模块,高压点火线,火花塞 如图:(注:由于没有利亚纳车的原理图,此图只作参考)

1.各种传感器 2.电子控制单元 3点火器(电子驱动模块). 4.点火开关 5.12v蓄电池 6.点火线圈 7.火花塞 8.初级线圈 9.次级线圈

下面讲解一下各部件的特性和工作原理:

1、微处理机(ecu)

一般车友所谓的电脑,指的是负责车辆与引擎状况监管的行车电脑,ecu--electronic control unit--电子控制单元。它由输入信号传感器、电子控制单元(ecu)及点火执行器三部分组成。也就是我们所称的ecu,是由一些主要的传感器:如发动机转速、冷却水温、进气温度、节气门位置、氧传感器、进气压力...等信号经ecu计算处理后送给执行单元进行修正,以实现高精度的空燃比和最佳的点火正时的控制。ecu除了依照不同的行驶状态来供给适当的油料、调整点火角度与时机外,还必须负责控制各种电子配备,如冷气系统、冷却系统以及自我检测系统等,对于车辆来说,ecu相当于人体的大脑,负责接受各种信号,经由内建的基础程式判别后,来控制各个系统,以维持车辆正常的行驶。ecu按照预先设计的程序计算各种传感器送来的信息,经过处理以后,并把各个参数限制在允许的电压电平上,再发送给各相关的执行机构,执行各种预定的控制功能。

微处理机根据输入数据和储存在map中的数据,计算喷油时间、喷油量、喷油率和喷油定时等。并将这些参数转换为与发动机运行匹配的随时间变化的电量。以发动机的转速、负荷为基础,经过ecu计算和处理,向喷油器、供油泵等发送动作指令,使每一个汽缸都有最合适的喷油量、喷油率和喷油定时,保证每一个汽缸进行最佳的燃烧。由于发动机的工作是高速变化的,而且要求计算精度高,处理速度快,因此,ecu的性能应当随发动机技术的发展而发展,微处理器的内存越来越大,信息处理能力越来越强。

这个信号输入电子点火控制器,经过大功率晶体管前置电路放大、整形处理后,控制高能干式点火线圈初级的充电和放电过程,当功率管导通时,点火线圈初级也导通,点火线圈贮能,当信号使控制器功率管截止时,点火线圈初级断路,在线圈次级感应出瞬时高压。

由微控制器发出的控制信号经过点火器中的功率三极管的驱动放大,(注:我未拆卸过利亚纳车的ecu,有些车是使用功率模块或者是达林顿,或直接将点火电子控制单元以微控制器为核心,并由电源、输入信号整形处理、驱动放大电路和通讯电路等功能模块构成。) 不管是用哪一种方式,原理都是一样.是实现了对初级电路的通断电控制。即点火控制:包括点火顺序控制、点火定时控制和点火能量控制。点火系统应按发动机的工作顺序进行点火,即点火顺序应与发动机的工作顺序一致,否则不能适时点着混合气,发动机就不能正常工作。点火定时控制的目的是使发动机功率输出大、油耗低、爆震小和排放低,点火系统必须在最有利的时刻点火,并需在上述目标之间进行折衷。点火时刻用点火提前角来表示,从火花塞开始跳火到活塞运行至压缩行程上止点的时间内曲轴转过的角度被称为点火提前角。发动机在不同工况下的最佳点火提前角是不同的。在微机控制的点火系统中,根据发动机转速、负荷等传感器的信号确定发动机运行工况,计算出最佳的点火时刻,并由微控制器输出控制信号,使功率三极管截止、初级电路断电,从而实现控制。

2、点火线圈

在汽车发动机点火系统中,点火线圈是为点燃发动机汽缸内空气和燃油混合物提供点火能量的执行部件。它基于电磁感应的原理,通过关断和打开点火线圈的初级回路,初级回路中的电流增加然后又突然减小,这样在次级就会感应产生点燃火花塞所需的高电压。点火线圈可以认为是一种特殊的脉冲变压器,它将10-12v的低电压转换成25000v或更高的电压。主要是通过初级线圈绕组的电流作为磁场储存。当初级线 圈绕组电流突然被切断(通过功率晶体管断开电路接地端)时,磁场衰减,使次级线圈绕组产生感应电动势,该感应电动势的电压足以使火花塞放电,我们称其为电感放电式点火。(如图). 另外也有电容放电式点火系统,通常被称为 cdi点火方式。

我们的利亚纳车沿用的是闭磁路 固体式点火线圈,主要由低压线圈绕组、高压线圈绕组再串联高压阻尼电阻后分二路输出、闭磁路铁芯、外壳以及固体填充物等组成(其外形结构如图所示)。

3、点火线圈中另一组成部件—高压线。

高压导线顾名思义就是肩负着传输由高压线圈所发出的高压电流到火花塞的任务。高压线其实是很简单的绝缘导线,一条最普通的金属导线外包上高强度绝缘体就是了。它的最主要质量指标就是能在较高、低温下有良好的绝缘强度。它通过的电流很小,对里面的金属导线要求甚低;通过的电压很高(15000v-40000v),所以要求的绝缘材料绝缘系数甚高。它的主要毛病就是绝缘材料老化绝缘强度下降而产生漏电。一组优良的高压导线必须具备最少的电流损耗及避免高压电传输过程产生的电磁干扰。因此高压点火线设计成为带电阻值的,这个电阻在电路学里面叫阻尼电阻。高压线电阻的大小是根据各种不同的高压输出系统设计而不同,有的只有几百欧姆,有的达到10k以上。当然带阻尼电阻的高压线只有电喷车上才使用的,以前的白金汽车点火系统化油器车辆无需这玩儿。